分散分析(概要)

<u>要因や水準といった分散分析に関する基本的な話,そして分散分析の仮定についての話はここでは割</u> 愛する。仮定は基本的に重回帰分析の場合と同様である。

(詳細については清水先生の HP (http://norimune.net/1761))

なお,<u>1要因2水準の参加者計画に基づきデータについて統計的検定を行うときはWelchの検定を用いる。検定の二重性の問題を回避するためである。</u>t検定は各群のデータの分散が等分散であると主張できる場合のみ用いる。

○<u>2×3の参加者間計画に基づくデータについて分散分析を行う</u>場合(HAD_sample_data.xlsの anova シートを使用),具体的には a と b という参加者間要因が time1 という従属変数に及ぼす影響を検討 する場合

- 変数名 time2 time1 time3 time4 分析 ○ 変数情報 選択セルを使用 統制変数を投入 変数を左につめる 変数の作成 シート管理 ● 回帰分析 データ シート 〇 因子分析 データセット HADの設定 6 8 使用変<mark>数</mark> ₪ Ь time1 9 а 10 11 □ フィルタをオフにする 目的変数を投入 主効果を全投入 交互作用を全投入 オブション 分析実行 分散分析 12 ▼ 出力を上書きしない 13 14 目的変数→ time1 \$ これはスライス変数(調整変数)が モデ a*b 1 a の場合の例 共変量 反復測品 スライスに投入 各セルの平均値 23 一 一般化効果量 □ 共変量を中心化 24 □ 不偏推定効果量 | 名義有意水準を表示| 25 モデル保存 ○ 回帰分析 ◉ 分散分析 ○ 一般化線形モデル ○ 階層線形モデル 26 27 変数情報 フィルタ 値 ラベル ◎変数 コード 300 301 ID 302 a 303 b 304 time1 305 time2 306 time3 307 time4 308 309 310 311 312 「データ モデリング Slice Anova CellMean Ttest ↔
- 以下の形でセッティングする。

② 「各セルの平均値」をクリックする。CellMean シートが出てくる。各セルの人数や平均等の情報 が検定を行う前に分かる。今回の場合、人数が少ないので本来は分析するべきではない。

(次頁に出力結果を記載)

	Α	В	С	D	E	F	G	Н	Ι	J		К	L	М	Ν	0	Ρ
1		1															
2	各セル(D平均値と	標準偏差										分析コード:		0.12秒		
3																	
4				平均値	標準偏差	標準誤差	95%精度	人数									
5		a=0	b=1	3.667	1.155	0.667	2.122	3		8 1							
6			b=2	3.000	1.414	1.000	4.303	2		_							
7			b=3	6.500	0.707	0.500	2.151	2		/ -			I				
8		a=1	b=1	3.000	0.000	0.000	0.000	1		6 -			T				
9			b=2	2.500	0.707	0.500	2.151	2		5 -						-	
10			b=3	3.500	2.121	1.500	6.454	2		ซี่	т						
11										<u>Ē</u> 4		T					
12										3 -	T				Т		
13										2 -							
14										-							
15										1 -							
16										0							- L
17											b=1	b=2	b=3	b=1	b=2	b=3	
18												a=0			1		
19												a=0			9-1		
20																	
21										※エラー	バーは	標準誤	差				
22																	
23																	
24																	

- ③「オプション」をクリックして、分散分析のタブで「デフォルト設定」をクリックする。HADでは 検出力を考慮した設定を行っているが、意図があって設定を修正したいのであれば変更は可能。関 連して、主効果や多重比較の有意水準を0.05(デフォルト設定)から0.10等の他の基準に変更す ることも可能。ただし、帰無仮説検定では、有意か否かの二項論理の考え方を用いており、有意水 準を事前に設定しておかないといけないという前提がある。そのために、基本的にデフォルト設定 をすすめる。多重比較の方法等、設定内容について深く知りたい場合は、「検索したい語句+HAD」 といったキーワード検索で清水先生の HP にアクセスするように。
- ④ 「分析」をクリックする。Anova シートと Slice シートが出力される。

Anova $\sim - \vdash$

要因の効果部分における用語の解説

SS: 各主効果・交互作用の平方和 MSe: 誤差平方和 df2: 誤差自由度

MS:各主効果・交互作用の平均平方和 df1:各主効果・交互作用の自由度 偏η²:効果量のひとつ(詳細は省略)^{*}

*伝えるための心理統計(勁草書房)を読むことをすすめる

Anova シートの続き

ただし、今回の分析では各要因の主効果は有意ではないのでチェックする必要なし。Slice シートも同様。交互作用が有意ではないため。

○<u>2×3×4の混合計画に基づくデータについて分散分析を行う</u>場合(HAD_sample_data.xls の anova

シートを使用)

① 以下の形でセッティングする。基本的なセッティングのパターンは参加者間計画の場合と同様。こ

<u>こでは a と b を参加者間要因, time1 から time4 を「c」という参加者内要因として考えている。</u>

	А	В	С	D	E	F	G	Н	I	J	к	L	м	N	0
1	変数名	D	а	ь	time1	time2	time3	time4							
2															
3	分析		選択	セルを使用	統制	変数を投入	変数を	左につめる		○ 変数情報		変数の作用	式	- 	- 管理
4										● 回帰分析				-	
5															T.=//-=
6	テーターシート									 〇 因子分析) >09	· · ·	HADO	の設定
-		-													
8	伸用恋粉	-		L	41	al	Alex - O	4 har - 4							
9	LCH & SX		a	D	time i	timez	timea	time4							
10															
11						B+ A+0.1	++ - T / h	B+* A+0.1				/ \+r'+=-/-			をオフにする
12	分散分析		883	度敬を授入	± x03	*を全投入	× 里 11#	用を全投入		オフション		为机美门	r	同世力を	上まましたい
13														J• 1712	
14						<u>(</u>									
15	目的変数一	+ time1	time2	time3	time4	\$	с						'	,	
16										 [\$_	のうし	ろに. [c と入	カすると	・「参
17	モナルー	*a	b	С	a*b	a*c	b*c	a*b*c			ᇦᅖᄪ	の友益。			- /
18										_ 加有 P	门安囚」	の名削	ル HAD	ECU	c] Z
19	共変量一	<mark>≻</mark>								_ 設定さ	されたこ	ことにな	る		
20															
21	反復測定一	→													
22			<u> </u>												
23	スライスー	→ a	ь		スラ・	rスに投入	各セル	レの平均値		□ 共変量を	中心化	□→鰺伯	·効果量		
24										「人気量を					
25										右我有息	小牛を取り	11.1Mm38	医疟刈未里		
26	モテル保存	〇 回帰分	析 🖲	分散分析	<u>*</u> 작()	線形モデル	 階層総 	泉形モデル							
27				_											
300	変数情報	フィルタ	値	ラベル	@ <u>&</u> ,										
301	ID														
302	а														
303	b				3	要因交を	「作用の	場合. 多词	重比較	を行うた	めにけ				
304	time1					ハロヘーニ	- 11 / 13 * 2 5 米/- ナ- の			いた フジ					
305	time2					フィス変	2 叙 2 2	つ設定する	こい安	かめる^^					
306	time3 time4														
307	time4														
300		1													

- **もし3要因分散分析を行ったときに2要因交互作用が有意になった場合はスライス変数を任意のひと つの要因に設定する。
- ② 「各セルの平均値」をクリックする。チェック箇所は参加者間計画の場合と同様。
- ③「オプション」をクリックして、分散分析のタブで「デフォルト設定」をクリックする。
- ④ 「分析」をクリックする。Anova シートと Slice シートが出力される。
 今回の場合, cの主効果とa
 と cの交互作用が有意である。
 言い換えれば、スライス変数を2つ設定している場合の Slice シートの結果は特に算出する必要がないということになる。必要なのは a と cの交互作用についての単
 純主効果の結果を示した Slice シートである。

(次頁に Anova シートの出力結果を記載)

HAD による分析方法 中島健一郎

A	в	С	D	E	F	G	н	I	J	к	L	М	N	0	
1 2 分散分	祈										分析コード:		- 0.48秒	>	
	モデル	time1	time2	time3	time4	←	a	b	c	a*h	a*c	b*c	a*b*c		
T =" u	107 <i>1</i> 0	time i	(inicz	timeo	tine+				0	0.0	14.6	10.0	0.0.0		
モテル	/週合									参加	□者内理	国を扨	う分散	分析	の場合 球面性の仮定
	T="11.	SS 199.50	df	MS E 67	「値	ℴ値				参加	ロロロタ	マン亜	、ノ刀取	、ノノヤト エ な	い物日, 小田住り区足
)	モナル 誤差(ID)	25.54	2 2	6 4.25	4 7					が作	可/こされ		いめつ	• <u>**</u>	<u>・ 個性の 仮 た と は 、 谷 样</u>
	誤差(c) 全体	24.95	8 1 0 4	8 1.38	7					<u>間()</u>)差の分	散かす	べて等	い	,という仮定である。
	±1+	101.000	•	·r						たた	Ľ, <u>HAD</u>	のでは球	面性の)仮定	についての有意性検定
	流众也通	R	R ²	Adjust A	² AIC	AICC	BIC			<u>を</u> 彳	<u>,</u> わず,	C-M(0	<u>Chi-Mu</u>	ller)	<u>法を用いた補正をデフ</u>
	사의 다 181류	.044	3 .72	.1 .40	4 007.07	008.00	330.20			オル	/ト設定	にして	いる。	ここ	の値が1以上であると
球面性	の検定									きに	要因の	効果に	ついて	の自	由度は df1 と df2 を.
										1 #	* <u>スロ*</u> 満の堪	合け補	TF df1	<u>له ح</u>	<u>日交回 にこと ここと;</u> f9 を田いた検定を行っ
	変数名	W 151		df 3	p値 5 120	C-M 423	H-F 588	G-G 478		<u>- 7</u> 1	<u>、1回マンの</u> 、て ム	回の担		<u></u>	<u>ロ こうい たん</u> とり ジ でなるため 結正 Jf1
	-	.10	1 0.14		0 .120	.420	.000		リう		'る。 ´フ 'のよい	回り場		420] 7	てめるため, 桶正 dl1
要因の)効果(タイブ田 ³	平方和)	※球面性	逸脱に対す	る自由度補	E = C-M				20	lf2 を検	正に用	vicu	\$ °	
									1.4			1.4			
	変数名	55	MS 2 10.50	MSe 12 4.25	df1 7 1	df2 6	<u>補止</u> df1 1	7相止df2 6	F1直 2.467	<u>偏 n ²</u> 291	95%CI				
	Ь	27.37	3 13.68	7 4.25	7 2	6	2	6	3.215	.517	.000, .653	.112			
	a*b	36.52	8 12.17 8 0.03	4 1.38	7 3	18	1.27	7.62	8.780	1.594	i .284, .825 3 .000, .000	.016	*		
	a*c	35.92	3 11.97	4 1.38	7 3	18	1.27	7.62	8.636	.590	0.00 450	.016	*		
	a*b*c	9.94	5 1.65	8 1.38	, o 7 6	18	2.54	7.62	1.195	.185	5 .000, .450 5 .000, .579	.007	i		
推定平	均と多重比較	※参加者	皆内要因の	多 <u>重</u> 比較 =	ペアごとの副	是項									
	全体平均		「悪いた三四方		0.5% 1.78	17	/+	/+							
	切片	<u>半均1世</u> 4.841	<u>(標準読者</u> 0 0.31	<u>≧ 95% 1°pp</u> 4 4.07	95% <u>EPP</u> 2 5.608	dt 6	<u>ぞ1進</u> 15.419	<u></u>							
1															
要因: a										_					
	水準ごとの平均・	値								6 -		_			
	<u>水準</u> 0	<u>平均値 標</u> 4.347	<u>準誤差 95</u> 0.397	<u>%下限 95%</u> 3.376	<u>上限 df</u> 5.319	t値 6 10948	p値 3 000			5 -	т	I	_		
	1	5.333	0.486	4.143	6.523	6 10.967	.000			44 - 900 -	1		0		
										2 -			1		
	<u>多重比較</u> 水準の組	<u>(調整法 = Ho</u> 差 標	lm法) 【準誤差 効	果量 g 95	%CI df	<u>主効果p値</u> t値	<u>i .167</u> p値	調整p値		1 -			_		
	0 - 1	-0.986	0.628	882 -2.01	0, 0.2	6 -1.571	.167	n.s.		0 +	а				
										w -	8	軍律部業			
要因: b										*-		景华訣差			
	水準ごとの平均・	値								7		T			
	水準	平均值 標	(準誤差) 95 0.596	※下限 95% 2 751	上限 df	t値	p値			5 -	тТ	1			
	2	4.375	0.516	3.113	5.637	6 8.482	2 .000			4-	1 1		1		
	3	5.938	0.516	4.675	7.200	6 11.511	.000			2 -			2		
	多重比較	(調整法 = Ho	lm法)			主効果n値	ī 112			1 -					
	水準の組	差標	準誤差 効	果量 g 95	%CI df	t值	p値	調整p値		0	ь				
	1 - 2	-0.167	0.788	-1.458 -2.91	18, 1.0 8, 0.0	6 -0.212	.839 5 .071	n.s. n.s.							
	2 - 3	-1.563	0.729	-1.317 -2.73	34, 0.1	6 -2.142	.076	n.s.		*:	ロラーバーは	禀 準誤差			
								-						~	
要因: c	(c)														
	水準ごとの平均	値								6		I			
	水準 time1	<u>平均値 欄</u> 3.694	<u>票準誤差 9</u> 0.396	5%下限 95 2 725	X <u>上限</u> df 4.664	<u>t値</u> 6 933	p値 27 00	0		5 -	т	I	time1		
	time2	4.333	0.527	3.044	5.623	6 82	22 .00	0		4 - 唯 。	I I		time2		
	time3	6.139	0.499	5.384	6.894	6 19.90	00. 00	0		2 -			time3		
]	1 -			∎ time4	<u> </u>	
	多重比較	(調整法 = Ho	olm法)		EKOI "	主効果p	值	7 ***		o +	c		_		
	小(単の)組 time1 - time2	·查 積 0.639	<u>家伴訳差 匆</u> 0.221	<u>9末軍g 9</u> 382 -1.1	5%-UL df 63,0.3	t1₫ 6 −2.85	p1直 30 .02	<u>調整p1値</u> 8 n.s.							
	time1 - time3 time1 - time4	-1.500 -2.444	0.645	927 -1.7	47, -0. 78, -0	6 -2.3	24 .05 71 00	9 n.s. 3 015	*	>	Kエラーバー	は標準誤差			
	time2 - time3	-0.861	0.671	467 -1.2	52, 0.3	6 -1.28	34 .24	7 n.s.							
	time2 - time4	-0.944	0.344	-1.105 -2.0	29, 0.1	6 -2.74	46 .03	a n.s. 3 n.s.						_/	/
\sim															
										/					

c の主効果が有意であるため、この欄にある多重比較の 結果を参照する。time1 と time4 に有意差がある

ちなみに、Slice のシート (の一部) は以下の通り。

# 料注動品の転置 Image:		А	в	С	D	E		F	G	Н	I	J	к	L	М	N	0			
1.05 ***1.05 ***1.05 ***1.05 ***1.05 ***1.05 ***1.05 *1.05 ***1.05 *	1	崔维十分	は思い捨守											会新コード		11634				
1 近日間に 10002 10003 10000 10000 10000	2	半祀土>	の未の 使走											2010 L T		1.1049				
5 費力丁克基酸 a b 7/20120 年夏 274.2 変数倍 ////////////////////////////////////	4		従属変数		time1	time2	tim	e3	time4											
************************************	5		群分けする変換	数	а	b														
空間的の経営 アスパス 変換的 アメ ア<	6																			
************************************	7	球晶水红	り検空																	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9	사비가	9 19 JE																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10		スライス	変数名	W	χ^2	値	df	ø值	C-M	H-F	G-G	下限							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	11		a=0, b=1	С	.1	57 8	3.743	5	.120	.483	.531	.478								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	12		a=0, b=2	С	.1	57 8	3.743	5	.120	.483	.531	.478		D H4 ψ± −	と対用の	৵₩田	F. 28	1 1.2	201	下夕 (4)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	13		a=0, b=3	C	.1	57 E	3.743	5	.120	.483	.531	.478	C (ク 早税 :	主効未の	/	a //	1, D //	JAZ] U	り采件,
33 第1, P2 0 100 8/3 23 1/18 200 34 第1, P2 0 155 6.713 6.6 150 6.713 6.6 150 6.713 6.6 150 6.713 6.6 150 6.713 6.6 150 6.713 1.6 <td>14</td> <td></td> <td>a=1, b=1</td> <td>С</td> <td>.1</td> <td>57 8</td> <td>3.743</td> <td>5</td> <td>.120</td> <td>.483</td> <td>.531</td> <td>.478</td> <td> [</td> <td>aが1,</td> <td>bが3」</td> <td>の条件</td> <td>⊧で単;</td> <td>純主効</td> <td>」果が有</td> <td>ī意</td>	14		a=1, b=1	С	.1	57 8	3.743	5	.120	.483	.531	.478	[aが1,	bが3」	の条件	⊧で単;	純主効	」果が有	ī意
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	15		a=1, b=2	C		57 E	2743	5	.120	.483	.531	.478								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	17		a=1, b=3	0		57 0	1.743		.120	.403	.001	.470	.000							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	18																			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	19	要因の 🏻	単純効果(タイプ	/Ⅲ平方和)		₩ MSe	ョーブーノ	レされた	誤差項,	球面性逸脱	に対する自	由度補正 =	C-M							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20			and the state of the			_				Automa in	Art and the								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	21		スライス	変数名	SS	M	5	MSe	df1	df2	補正df1	補正df2	F値	偏n ²	95%CI	<i>p</i> 1值				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22		a=0, b=1	C	0.6	67 C	1.222	1.387	3	18	1.45	8.69	0.160	.074	1.000, .460	.787				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23		a=0, p=2	C	3.3	/0 1	.120	1.387	3	18	1.45 4.45	8.69	0.811	.445	3 .000, .829	.437				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	24		a=0, b=3	C	127	50 2	250	1.387	3	18	1.45	8.69	3.065	1.000	000,000	107				
27. a=1, t=3 c 34.375 11458 1.387 3 18 145 8.69 8.204 8.92 676, 964 014* 114 =1, t=2	26		a=1, b=2	c	25.3	75 E	3.458	1.387	3	18	1.45	8.69	6.100	.859	486, 954	.028	*			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	27		a=1, b=3	С	34.3	75 11	.458	1.387	3	18	1.45	8.69	8.264	.892	.676, .964	.01.4	*			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	28																			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	114																			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	115	a=1, b	=2																	
$\frac{1}{10} \frac{1}{10} \frac$	116		水浦ごとの立ち	佔																
119 time1 2500 0.248 4752 6 2716 014 111 time3 5000 116 2160 7847 6 3674 002 111 time3 5000 116 2160 7847 6 3674 002 112 time4 7500 0717 5746 9254 6 10462 000 112 time4 7500 0717 5746 9254 6 10462 000 113 time4 7500 0717 5746 9254 6 10462 000 114 time1 time3 5000 1500 -644 -3683 008 040* 118 time1 -5202 1500 -644 -4376 005 028* 118 time2 time3 -5000 1155 -1667 147 ns. 119 time1 -1200 288.04 6 -2508 046 ns. 119 time2 time3 -1004 288.04 6 -3128 020 ns. 121 time3 time3 time4 -2500 126 3803 001 111	117		水準にとの干切	<u>『</u> 平均値	標準誤差	95%下限	95% 上限	df	t値	p値										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	119		time1	2.500	0.920	0.248	4.75	2	6 2.7	16 .014	4									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	120		time2	4.500	1.225	1.503	7.49	7	6 3.6	74 .002	2									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	121		time3	5.000	0.717	2.160	9.25	4	6 104	08 .004 62 .004	נ ר		「のが1	Ьが	91の冬	化にお	+スタ	ませず	ものは」	ŧ.
124 9 ± the 129 1 ± 0 ± 0 ± 0 ± 0 ± 0 ± 0 ± 0 ± 0 ± 0 ±	123		cime r	7.000	0.717	0.7 10	0.20		0 10.1		<u></u>		- a //- 1	., D //*			103	里地形	スマノ小ロフ	\wedge
25 25 25 25 204 ** image: time 1 times 2 -2000 0514 -5222 -4583 006 000* 127 time 1 times 2 -2500 1500 -964 -2480 006 000* 128 time 1 times 2 -2500 1500 -964 -2480 5007 006 000* 129 time 1 times 4 -5000 1586 -169 147 ns.	124												(調整」	p値をす	≶照)					
x_{10} $y_{1}x_{2}y_{2}$ $y_{1}x_{2}y_{2}y_{2}$ $y_{1}x_{2}y_{2}y_{2}$ $y_{1}x_{2}y_{2}y_{2}$ $y_{1}x_{2}y_{2}y_{2}$ $y_{1}x_{2}y_{2}y_{2}y_{2}$ $y_{1}x_{2}y_{2}y_{2}y_{2}$ $y_{1}x_{2}y_{2}y_{2}y_{2}y_{2}$ $y_{1}x_{2}y_{2}y_{2}y_{2}y_{2}y_{2}$ $y_{1}x_{2}y_{2}y_{2}y_{2}y_{2}y_{2}y_{2}y_{2}y$	125		多重比較	(調整法 = H	holm法) 標準調業	加里量 -	DEKOT	علم	<u>主効果p</u>	1直 .024	4 米 () () () () () () () () () () () () () (
128 time1 - time3 -2500 1500 -964 -2430,05 6 -1667 147 ns. 129 time1 - time4 -5000 1.143 -2449 5087,01 6 -4376 005 028 * 131 time2 - time3 -0500 1.559 -169 1.302,09 6 -0321 758 ns. 1 131 time2 - time4 -3000 1.166 -1208 -2508 0.46 ns. 1 133 time3 - time4 -3000 0.799 -1047 -2566,0.4 6 -3128 020 ns. 1 <td>120</td> <td></td> <td>time1 - time2</td> <td>一 一2.000</td> <td>1点:羊畎左 0.514</td> <td>加木里 g -5.222</td> <td>-14.584</td> <td>4. ar</td> <td>6 -38</td> <td>93 .00</td> <td><u>副明知能</u>に増 3 .040</td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	120		time1 - time2	一 一2.000	1点:羊畎左 0.514	加木里 g -5.222	-14.584	4. ar	6 -38	93 .00	<u>副明知能</u> に増 3 .040	*								
129 time1 - time4 -5000 1.143 -2.449 - 5007, 0.1 6 -4.362 .055 0.028 * 130 time2 - time4 -3000 1.559 -169 1.302, 0.8 6 -2.508 0.046 ns. 131 time2 - time4 -3000 1.196 -1.208 2.388, 0.4 6 -2.508 0.46 ns. 132 time3 - time4 -2.500 0.799 -1.047 -2.566, 0.4 6 -3.128 0.20 ns. 134 time3 - time4 -2.500 0.799 -1.047 -2.566, 0.4 6 -3.128 0.20 ns. 134 time3 - time4 -2.500 0.799 -1.047 -2.566, 0.4 6 -3.128 0.20 ns. 135 a=1, b=3	128		time1 - time3	-2.500	1.500	964	-2.430, 0	5	6 -1.6	67 .14	7 n.s.									
100 time2 - time4 -109 - 1302,09 0 -0.29 7.99 ns. 111 time2 - time4 -3000 1196 -108 - 2588,04 6 -2508 0.46 ns. 113 time3 - time4 -2500 0.799 -1047 - 2566,04 6 -3128 020 ns. 113 time3 - time4 -2500 0.799 -1047 - 2566,04 6 -3128 020 ns. 113 ima3 - time4 -2500 0.799 -1047 - 2566,04 6 -3128 020 ns. 113 ima4 - - - - - - - 114 - <td< td=""><td>129</td><td></td><td>time1 - time4</td><td>-5.000</td><td>1.143</td><td>-2.449</td><td>-5.097,0</td><td>.1</td><td>6 -4.3</td><td>76 .005</td><td>5 .028</td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	129		time1 - time4	-5.000	1.143	-2.449	-5.097,0	.1	6 -4.3	76 .005	5 .028	*								
12 1103 1 003	130		time2 - time3 time2 - time4	-0.500	1.559	-1 208	-1.302, 0	9 4	6 -25	21 ./58 08 .046	າ n.s. ງີ ກະ									
133 134 135 136 137 136 137 138 138 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 130 <td< td=""><td>132</td><td></td><td>time3 - time4</td><td>-2.500</td><td>0.799</td><td>-1.047</td><td><u>-2.566,</u>0</td><td>4</td><td>6 -3.1</td><td>28 .020</td><td>) <u>n</u>.s.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	132		time3 - time4	-2.500	0.799	-1.047	<u>-2.566,</u> 0	4	6 -3.1	28 .020) <u>n</u> .s.									
134 135 a=1, b=3 141 141 141 141 141 142 141 143 144 145 141 143 144 144 145 141 146 146 147 146 147 147 141 147 141	133										_									
137 水準ごとの平均値 137 水準ごとの平均値 138 139 138 139 130 125 2503 8.497 6 4.491 000 130 141 11082 5.500 1.225 2.503 8.497 6 4.491 000 130 141 11084 10.340 6 6.462 000 130 141 11084 10.350 6 12.555 000 130 141 1108 1108 1108 1108 1108 1108 1108 1108 1108 1118 1118 1118 1118 1118 1118 1118 1118 1109<	134	o=1 kr	-3																	
137 水準ごとの平均値 v <	136	a=1, 0	0																	
138 水準 平均値< 標準観差 95%上限 off t/値 p/値 139 time1 3500 0920 1248 5.752 6 3803 001 140 time2 5500 1225 2503 8497 6 4491 000 141 time3 7500 1.161 4.660 10.340 6 6.462 000 142 time4 9.000 0.717 7.246 10.754 6 12.555 000 143 12.555 000 144 12.555 000 144 12.555 000 (調整 p 値 を参照) 144 10.754 6 12.555 000 (調整 p 値 を参照) 144 12.99.80.05 6 -2.887 <	137		水準ごとの平均	值																
199 Umen 3500 0920 1248 5.752 0 3803 001 140 time2 5500 1225 2503 8.497 6 4.491 000 141 time3 7500 1161 4.660 10.340 6 6.462 000 「a が 1, b が 3」の条件における多重比較の結果 142 time4 9.000 0.717 7.246 10.754 6 12.555 000 (調整 p 値を参照) 143 (調整 p 値を参照) 144 145 (iii 整 p 値 146 147 time1 - time3 -4000 1500 -1543 -2687, 03 6 -2667 037 ns. <	138		水準	平均値	標準誤差	95%下限	95%上限	df		<u>p値</u>										
11 time3 7500 1.161 4.660 10.340 6 6.462 000 $[a \ 5^{1}], b \ 5^{1}], b \ 5^{1}], c \ 5^{1}], b \ 5^$	139 140		time1	3.500	1.225	2 503	5.75	2	0 3.8 6 4.4	ua .00° 91 001)	(
142 time4 9.000 0.717 7.246 10.754 6 12.555 000 (調整 p 値を参照) 143	141		time3	7.500	1.161	4.660	10.34	0	6 6.4	62 .000	5		「aが	1, b が	3」の条	件にお	ける多	多重比較	較の結	果
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	142		time4	9.000	0.717	7.246	10.75	4	6 12.5	55 .000	0		(調索	n dita	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		2			
325 $9 \pm t t t \overline{0}$ $(11 \pm t \overline{0}) + t \overline{0}$ $2 t t \overline{0} + t \overline{0} + t \overline{0}$ $2 t t \overline{0} + t \overline{0} + t \overline{0}$ $1 \pm t \overline{0} + t \overline{0}$ 145 $4 \pm t \overline{0} + t \overline$	143	1											(詞雀	h順を	111 第二					J
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	145		多重比較	(調整法=F	Holm法)				主効果の	値011	*			-						
147 time1 - time2 -2.000 0.514 -7.46 -2.083, 0.5 6 -3.893 0.00 0.040* 148 time1 - time3 -4.000 1.500 -1.543 -3.425, 0.3 6 -2.667 0.037 n.s. 149 time1 - time3 -4.000 1.500 -1.543 -3.425, 0.3 6 -2.667 0.037 n.s. 150 time2 - time3 -2.000 1.559 -6.77 -1.979, 0.6 6 -1.283 2.47 n.s. 151 time2 - time4 -3.500 1.143 -1.409 -3.187, 0.3 6 -2.292 0.26 n.s. 152 time3 - time4 -1.500 0.799 -628 -1.906, 0.6 6 -1.877 1.10 n.s.	146			差	標準誤差	効果量g	95%CI	df	t値	p値	調整p値									
148 time1 - time3 -4 000 -1 543 - 3425, 03 0 -2 200/ 03// ns. 149 time1 - time4 -5500 1.143 -2 694 - 5562, 0.1 6 -4814 .003 .018 * 150 time2 - time3 -2 004 -5562, 0.1 6 -4814 .003 .018 * 151 time2 - time3 -2 000 1559 -677 - 1979, 0.6 6 -1283 247 ns. 151 time2 - time4 -3500 1.196 -1409 -3.187, 0.3 6 -2.926 .026 ns. 152 time3 - time4 -1.500 0.799 -6.28 -1.877 .110 ns.	147		time1 - time2	-2.000	0.514	746	-2.083, 0	5	6 -3.8	93 .008	3 .040	*								
150 time2 - time3 -2.00 1.75 1.97,06 6 -1.283 2.47 ns. 151 time2 - time4 -3.500 1.196 -1.409 -3.187,0.3 6 -2.926 0.26 ns. 152 time3 - time4 -1.500 0.799 -6.28 -1.877 1.10 ns.	148		time1 - time3	-4.000	1.500	-1.543	-3.425, 0 -5.562, 0	.3 1	6 -4.8	o/ .03 14 ∩∩′	/ n.s. 3 018	*								
151 time2 - time4 -3500 1.196 -1.409 -3.187 0.3 6 -2.926 0.026 n.s. 152 time3 - time4 -1.500 0.799 -6.28 -1.877 .110 n.s.	150		time2 - time3	-2.000	1.559	677	-1.979, 0	.6	6 -1.2	83 .24	7 n.s.									
152 Ltime3 - time4 -1.500 0.799 -628 -1.906, 0.6 6 -1.877 .110 n.s.	151		time2 - time4	-3.500	1.196	-1.409	-3.187, 0	3	6 -2.9	26 .026	ô n.s.									
	152		time3 – time4	-1.500	0.799	628	-1.906, 0	.6	6 -1.8	.110) n.s.	ノー								

これらの以外のパターンで分散分析を実施するときは,清水先生の HP の分散分析に関する記事 (http://norimune.net/650)や <u>HAD12 のユーザーズガイドの 36 頁から 38 頁</u>を参照すること。